

A L'UNIVERSITE D'ORLEANS

POUR OBTENIR LE GRADE DE

DOCTEUR DE L'UNIVERSITE D'ORLEANS

Discipline: Sciences de l'Univers

Spécialité : Géochimie

par

Sylvie OGIER

Diagenèse précoce en domaine lacustre : étude des composés minéraux et organiques des sédiments récents du lac d'Aydat (Puy de Dôme, France).

Soutenue publiquement le 1 octobre 1999 devant le jury composé de :

M. C. BECK
M. G. SARAZIN
M. G. BOURDIER
M. J-R. DISNAR
M. J. DOMINIK
M. J-C. TOURAY

Rapporteur,
Rapporteur,
Examinateur,
Examinateur,
Examinateur,
Examinateur,
Examinateur,

Professeur, Université de Savoie
Professeur, Université de Paris VII
Professeur, Université de Clermont-Ferrand
Dir. de Recherche au CNRS, Université d'Orléans
Professeur, Institut F.A. FOREL, Suisse
Professeur, Université d'Orléans

Résumé

Le Lac d'Aydat est un petit lac eutrophe et dimictique du Massif Central (France), en environnement volcanique. L'étude de la diagenèse des particules organiques et minérales de la colonne d'eau (trappes) et des sédiments récents (carottes superficielles) de ce lac, a été abordée selon les méthodes classiques de la sédimentologie, de la géochimie minérale, ainsi que par l'analyse d'une famille de constituants organiques majeurs : les polysaccharides. Les particules de la colonne d'eau ont été collectées mensuellement d'octobre 1995 à septembre 1996 à l'aide de 3 trappes réparties dans la colonne d'eau, dans la partie centrale du lac. Les carottes sédimentaires, de 50 cm de long, ont été prélevées à l'aplomb de la ligne de trappes.

La fraction minérale des sédiments est dominée par des particules authigènes. Les frustules de diatomées, qui représentent plus de 80% des sédiments, contribuent de façon stable à l'enregistrement sédimentaire. En revanche, des minéraux autochtones tels que la calcite et les oxy-hydroxydes de fer et manganèse, sont fortement impliqués dans la dynamique biogéochimique lacustre, essentiellement régie par les processus redox induits par l'activité biologique. Ainsi, le comportement des éléments les plus mobiles des sédiments de fond anoxiques, qu'ils soient solubles, échangeables et/ou complexables, a pu être précisé par le biais d'attaques chimiques séquentielles. L'ensemble des données géochimiques acquises sur la phase solide des sédiments, combinées avec les analyses des éléments en solution réalisées par l'équipe du Laboratoire de Géochimie des Eaux (Université Paris VII), a permis d'établir un bilan annuel des éléments chimiques dans le lac d'Aydat. Ce bilan a notamment permis d'identifier 5 types de comportements différents des divers éléments suivis tout au long de l'année d'étude et a également permis de quantifier l'intensité du recyclage des éléments réactifs tels que Fe, Mn, Co, Ba et As, dans le réservoir lacustre.

La dynamique de la matière organique, qui est essentiellement régie par les processus géochimiques lacustres via l'activité biologique, a été suivie grâce à l'analyse des polysaccharides, qui sont des composés ubiquistes majeurs du règne végétal, aisément recyclés. Malgré un flux de matière organique autochtone abondant dans le lac d'Aydat, la composition des sucres neutres reflète celle de la flore microbienne plutôt que celle de la production planctonique primaire (diatomées, cyanobactéries). Ainsi, l'intense activité bactérienne au sein de la colonne d'eau et surtout au niveau de l'interface eau-sédiment, qui se signale particulièrement par l'abondance d'un désoxyhexose, le rhamnose, empêche les sucres de participer significativement à l'enregistrement sédimentaire. Ces composés métabolisables contribuent donc via les bactéries, aux processus diagénétiques, et donc à l'entretien des cycles biogéochimiques dans lesquels les éléments minéraux les plus réactifs sont périodiquement impliqués.

Mots Clés: Diagenèse précoce, lac, Aydat, trappes à sédiment, sédiment, sédimentologie, géochimie minérale, géochimie organique, bilan annuel, polysaccharides, carbohydrates.

Table des matières

Résumé - Abstract	I
Table des matières	V
Liste des figures	XIII
Liste des tableaux	XIX
Liste des photos	XXIII
INTRODUCTION	1
Chapitre I- CADRE DE LA RECHERCHE ET OBJECTIFS	2
Chapitre II- L'ECOSYSTEME LACUSTRE	7
A- La vie lacustre	7
B- La stratification thermique	9
C- La minéralisation de la matière organique	11
D- Les flux de matière	13
E- Conclusion	15
Chapitre III- PRESENTATION DU SITE D'ETUDE : LE LAC D'AYDAT	17
A- Situation géographique	17
B- Contexte géologique	17
C- Caractère chimique des eaux	23
D- Les successions phytoplanctoniques	· 27
E- Hydrodynamisme de la colonne d'eau du lac d'Aydat	27
Chapitre IV- CARACTERISTIQUES GENERALES DES SEDIMENTS ETUDIES	33
A- Les sédiments des trappes	33
B- Les sédiments de fond	35
C- Les sédiments de la rivière Veyre	41
PARTIE I : LA FRACTION MINERALE	43
Chapitre I : ETUDE SEDIMENTOLOGIQUE	45
A- Etude granulométrique 1- Détermination et caractérisation des différentes populations	45
granulométriques	45

VII

2- Les sédiments des trappes	49
2.1- Evolution spatio-temporelle des distributions granulométriques	51
2.2- Estimation des flux de silice biogène (Fsib) et des flux terrigène	
(F _T) dans le lac d'Aydat	53
3- Les sédiments de fonds	59
4- Conclusions	61
B- Etude minéralogique	63
1- La fraction terrigène des sédiments du lac d'Aydat	63
2- La fraction authigène des sédiments du lac d'Aydat	7.5
3- Conclusion	83
Chapitre II: ETUDE GEOCHIMIQUE	8.5
A- Origine des apports détritiques	86
B- Les sédiments des trappes	91
I- Les éléments conservatifs	91
2- Les éléments liés à la phase authigène du lac	91
2.1- Les éléments liés à la productivité et/ou l'activité biologique	9.5
2.1.a- Le Silicium (Si)	95
2.1.b- Le Calcium (Ca)	95
2.2- Les éléments liés aux conditions oxydo-réductrices du lac	101
2.2.a- Le Fer (Fe)et le Manganèse (Mn)	105
2.2.b- Les éléments couplés aux cycles du fer et du manganèse	107
3- Conclusion	117
C- Les sédiments de fond du lac d'Aydat	119
1- Caractérisation chimique des sédiments	119
2- La spéciation des éléments chimiques dans les sédiments anoxiques	
du lac d'Aydat	125
2.1- Méthode et protocole d'extraction des éléments	125
2.2- Résultats	127
2.2.a- Contribution de la fraction des éléments solubles et	
échangeables	133
2.2.b- Contribution des éléments adsorbés et complexés	139
2.2.c- Contribution des éléments les plus fortement fixés	143
3- Discussion	145
3.1- Importance des conditions de prélèvement, de conservation et	
de traitement des échantillons de sédiments anoxiques	145
3.2- Comportement différentiel du fer et du manganèse dans les	
sédiments anoxiques du lac d'Aydat	147
3.3- L'association fer-phosphore dans les sédiments anoxiques du	
lac d'Aydat .	149

TABLE	DES	MA'	TIERES
-------	-----	-----	--------

4- Conclusion	153
D- Bilan géochimique du lac d'Aydat	157
D. Dhan geochimique du lue d'isjant	
PARTIE II : LA FRACTION ORGANIQUE	195
Chapitre I : INTRODUCTION	197
Chapitre II : PARTIE EXPERIMENTALE	201
A- Extraction des sucres neutres	203
1- Choix de l'acide	205
2- Choix du type d'hydrolyse	205
3- Détermination de la concentration d'acide HCl	207
B- Protocole opératoire et analytique	209
1- Effet du temps et de la température d'évaporation	209
2- Choix d'un standard interne	209
3- Reproductibilité des résultats et calcul des facteurs de réponse des	211
sucres neutres (CDC)	217
C- Dosage des sucres neutres en chromatographie en phase gazeuse (CPG)	217
1- Protocole expérimental	217
2- La séparation des monosaccharides	217
3- Limite de détection des sucres neutres	217
Chapitre III : RESULTATS ET DISCUSSION - EVOLUTION ET	
PRESERVATION DES SUCRES NEUTRES	221
A- Résultats	221
1- Les trappes à sédiments	221
1.1- Les flux sédimentaires, de carbone organique (Corg),	
d'opale de diatomées et de sucres	221
1.2- Les teneurs totales en sucres normaliséees au Corg des	
sédiments TCH ₂ O	225
1.3- Nature et évolution des monosaccharides dans les	
sédiments des trappes	229
2- La carotte sédimentaire	231
2.1- Les teneurs totales en Corg et en sucres	231
2.2- Nature et évolution des sucres neutres dans les sédiments.	231
B- Discussion	237
1- Les flux déterminés dans les trappes à sédiment.	237
2- Origine des sucres	245
3- Préservation et stabilité des sucres dans les sédiments	247 253
C- Conclusion	233
	IX

ANNEXES

<i>a</i>	TABLE DES MATIERES
PARTIE III : CONCLUSIONS GENERALES	259
A- La nature du flux sédimentaire dans le lac	259
B- La dynamique de la sédimentation dans la colonne d'eau	261
C- La diagenèse	265
D- L'enregistrement sédimentaire	267
REFERENCES BIBLIOGRAPHIQUES	271
•	